DISCRETE TIME MATHEMATICAL SIR MODEL FOR DISEASE TRANSMISSION

  • Type: Project
  • Department: Mathematics
  • Project ID: MTH0129
  • Access Fee: ₦5,000 ($14)
  • Pages: 70 Pages
  • Format: Microsoft Word
  • Views: 456
  • Report This work

For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

ABSTRACT: Infectious  disease  has  become  a  source  of  fear  and  superstition  since  the first  ages  of  human  civilization.  In  this  study,  we  consider  the  Discrete  SIR  model for  disease  transmission  to  explain  the  use  of  this  model  and  also  show  significant explanation  as  regard  the  model.  We  discuss  the  mathematics  behind  the  model and  various  tools  for  judging  effectiveness  of  policies  and  control  methods. The  model  has  two  equilibrium  states,  namely  the  disease  free  equilibrium  and the  endemic  equilibrium  state.  The  stability  of  each  equilibrium  state  is  discussed and  the  endemic  equilibrium  has  been  found  to  be  stable  while  that  of  the  disease free  equilibrium  was  unstable.  The  basic  reproduction  number  was  computed  and gotten  to  be  1.2.  The  disease  was  found  to  persist  with  Ro  >  1,  whenever  the natural  death  rate  is  reduced,  the  death  rate  caused  by  the  disease  and  the transmission  rate is  increased  but  the  disease  dies  out  with  Ro  < 1, whenever  the transmission  rate  and  the  birth  rate  is  reduced  and  recovery rate  is  increased. The  data  used  in  the  study  was  extracted  from  a  journal  stated  in  chapter 4  and  were  analysed  using  the  one-way  sensitivity  analysis,  and  also  used  matlab 2013  to  run  respectively  simulations  for  the  change  in  each  parameter  extracted. The  results  of  the  sensitivity  analysis  showed  that  the  birth  rate,  the  transmission rate  reduced  and  increasing  the  recovery  rate  will  make  the  disease  die  out  of  the population. 

TABLE  OF CONTENTS:

Title page

Undertaking

Certification

Dedication

Acknowledgement 

Table  of content

Abstract 

CHAPTER 1: INTRODUCTION                                                                              1.1  Background  of  the Study

1 1.1.1  Infectious  Disease………………………………………………..4  1.1.1.1  Notes  on  Infectious  Disease……………………………………4 1.1.1.2  Modelling  of  Infectious  Disease………………………………6 

1.2  Significance  of  Study…...….……………………………………………………8           1.3  Objectives  of  Study…………………………………………………………….8                                                                                                                            1.4  Scope  of  Study………………………………………………………………..9 

1.5  Definition  of  Terms………………..……….…………………………………9

1.6 Organization  of Study……....……………...………………………………......11

CHAPTER 2: LITERATURE REVIEW  2.1  Review  of  various  SIR  Models…………………………………………………12

2.2 Difference Equation….………………......…………………………………….17   2.2.1  Classification  of  Difference Equation…………………………………17 

 2.3 Description  of  some Deterministic Discrete  Time Epidemic Models…………18   

2.3.1  The SI  Model  …..………………………………………………... 19           

2.3.1.1  The Reproduction  Number of  an SI  Model………  20                             

 2.3.2  The SI  Model  …..………………………………………………... 21           

2.3.3  The SEIR Model…………………………………………...22     

2.4 Linear and  Nonlinear Models……………….………………………23 

2.5 Equilibrium  States……………………………………………..24

2.6 Uncertainty  and  Sensitivity  analysis  in  Modelling………………………

CHAPTER 3: METHODOLOGY 3.1 Introduction……..…………………………………………………….. 27 

3.2 Preliminaries………….……………………………………………..……28 

3.3 Model  Formulation……….……………………………………………………28 

3.3.1  Model  Assumptions……………………………………………………..28 

3.3.2  Description  of  the  Discrete  SIR Model………………………………….29  

3.4  Model  Equations……………………………………………………………….31

3.5Equilibrium  Points………………………..……………………………………36

3.5.1Disease-Free  Equilibrium  Point…………………………………………...37                                                    3.5.2Endemic  Equilibrium Point………………………………………………...38   

3.6   Stability Analysis  of  the  Equilibrium  Points………………………...................40                                                                    3.6.1  Stability Analysis  of  the  Disease-free  Equilibrium……………………….41

3.6.2  Stability  Analysis  of the EndemicEquilibrium………………..........43

 3.7  The  Basic  Reproduction Number …………..……………………………...46 

CHAPTER 4: ANALYSIS AND  NUMERICAL SIMULATION 4.0  Introduction…..………………….……………………………………………..49

4.1 Equilibrium  Points………………………………………………..50 


4.2 Stability  Analysis…………………………………….……..51

4.2.1  Stability  Analysis  of the Disease-Free  Equilibrium Point……………51   

4.2.2  Stability  analysis  of  the Endemic Equilibrium  Point………………....53

4.3 Sensitivity  Analysis………………...………………………………………….55 

4.3.1  Sensitivity  Analysis  using  the  Basic  Reproduction  Number………….55   

4.3.2  Sensitivity  Analysis  of Disease transmission  by Simulation……56    

4.4 Summary..................................................................................................62

CHAPTER FIVE: SUMMARY AND CONCLUSION  5.0  Introduction……….……………………………………………………………66 

5.1 Summary  and  Conclusion……………………………………………………...67  References………………………………………………………68 

DISCRETE TIME MATHEMATICAL SIR MODEL FOR DISEASE TRANSMISSION
For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

Share This
  • Type: Project
  • Department: Mathematics
  • Project ID: MTH0129
  • Access Fee: ₦5,000 ($14)
  • Pages: 70 Pages
  • Format: Microsoft Word
  • Views: 456
Payment Instruction
Bank payment for Nigerians, Make a payment of ₦ 5,000 to

Bank GTBANK
gtbank
Account Name Obiaks Business Venture
Account Number 0211074565

Bitcoin: Make a payment of 0.0005 to

Bitcoin(Btc)

btc wallet
Copy to clipboard Copy text

500
Leave a comment...

    Details

    Type Project
    Department Mathematics
    Project ID MTH0129
    Fee ₦5,000 ($14)
    No of Pages 70 Pages
    Format Microsoft Word

    Related Works

    ABSTRACT In this study, we have formulated a mathematical model based on a system of ordinary differential equations to study the dynamics of typhoid fever disease incorporating protection against infection. The existences of the steady states of the model are determined and the basic reproduction number is computed using the next generation... Continue Reading
    ABSTRACT In this research work, Mathematical Model for Measles Transmission Dynamics in Luweero District of Uganda, SVEIR model was developed and analyzed. The model consists of five non liner ordinary differential equations. The effective reproductive number, (the number of secondary infections when a single effective individual is introduced... Continue Reading
    Abstract In this research work, Mathematical Model for Measles Transmission Dynamics in Luweero District of Uganda, SVEIR model was developed and analyzed. The model consists of five non liner ordinary differential equations. The effective reproductive number, (the number of secondary infections when a single effective individual is introduced... Continue Reading
    . CHAPTER ONE 1.0 INTRODUCTION 1.1 Background of the Study Tuberculosis or TB (short for Tubercles Bacillus) is an air borne and highly infectious disease caused by infection with the bacteria mycobacterium tuberculosis. An individual is infected with the disease when he or she... Continue Reading
    Ebola Virus Disease is one of the deadliest infectious diseases that has increased both mortality and morbidity rates primarily on the African continent. The aim of this report is to use mathematical modeling and analysis in controlling the spread of this disease. In this study, a mathematical model which represents the transmission and control... Continue Reading
    1.0 INTRODUCTION 1.1 Introduction and Motivation 1.2 Aims and objective 1.3 Statement of the problem 1.4 Scope of the study 1.5 Definition of terms 2.0 CHAPTER TWO: LITERATURE REVIEW 2.1 Models and Modelling 2.2 TheLogistic model 2.3 The logistic differential equation 2.4... Continue Reading
    ABSTRACT In this project work, we have established a systematic study of z transform and its analysis on Discrete Time (DT) systems. The researcher also deal with Linear Time Invariant (LTI) system and Difference Equation as examples of DT systems. The right and left shift was use as a method of solution of the z transform to linear difference... Continue Reading
                        ABSTRACT In this project work, we have established a systematic study of z transform and its analysis on Discrete Time (DT) systems. The researcher also deal with Linear Time Invariant (LTI) system and Difference Equation as examples of DT systems. The right and left shift was use as a method of solution of the z... Continue Reading
    ABSTRACT This project proposes a non – linear mathematical model to study the effect of irresponsible infected  immigrants on the spread of HIV/AIDS in a heterogeneous population with a constant recruitment of susceptible. The equilibrium points, stability analysis  and numerical simulation on the model are presented. It is realised that at... Continue Reading
    ABSTRACT This study proposes and analyzes a non-linear mathematical model for the dynamics of HIV/AIDS with treatment and vertical transmission. The equilibrium points of the model system are found and their stability is investigated. The model exhibits two equilibria namely, the disease-free and the endemic equilibrium. It is found that if the... Continue Reading
    Call Us
    whatsappWhatsApp Us